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The disordered Ising ferromagnet
• The Ising model is a simple model for a magnet.

We consider it on the ℤ𝐷 lattice, with configurations given by 𝜎: ℤ𝐷 → −1,1 . 

• Given 𝜂: 𝐸 ℤ𝐷 → 0,∞ , the Hamiltonian of the model is

𝐻𝜂 𝜎 = −෍

𝑥∼𝑦

𝜂 𝑥,𝑦 𝜎𝑥𝜎𝑦

Thus, configurations with more alignment of adjacent spins are energetically 
preferred. The coupling constants 𝜂 allow for inhomogeneity in the lattice, 
assigning different energetic weights to different edges.

• We use the term disordered Ising ferromagnet (or random-bond Ising model) for 
the case that the 𝜂𝑒 are (quenched) random, sampled independently from a 
distribution 𝜈 on the non-negative reals (e.g., 𝜈 is uniform on 𝑎, 𝑏 for 𝑏 > 𝑎 > 0).

• We wish to understand the low-temperature properties of the disordered Ising
model and as a first step we consider its zero temperature properties.
In other words, we study configurations which minimize 𝐻𝜂 in a suitable sense.
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Ground configurations

• Reminder: Configurations are 𝜎: ℤ𝐷 → −1,1 . Given 𝜂: 𝐸 ℤ𝐷 → 0,∞ , the 
Hamiltonian is

𝐻𝜂 𝜎 = −෍

𝑥∼𝑦

𝜂 𝑥,𝑦 𝜎𝑥𝜎𝑦

• Ground configurations: A configuration 𝜎 is called a ground configuration if it 
satisfies that 𝐻𝜂 𝜎 ≤ 𝐻𝜂 𝜎′ for all configurations 𝜎′ which differ from 𝜎 at 
finitely many vertices. Note that while 𝐻𝜂 itself is a non-convergent sum, the 
difference 𝐻𝜂 𝜎 − 𝐻𝜂 𝜎′ is then well defined.
Ground configurations are a kind of local minimizers of 𝐻𝜂.

• It is clear that the two constant configurations are ground configurations.

• Challenge: Does the disordered Ising ferromagnet admit non-constant ground 
configurations? (this has probability 0 or 1 by ergodicity)

• Discussed in Newman’s (1997) book, by Wehr (1997) and by Wehr-Wasielak (2016) 
(the latter shows that such ground configurations do not arise in a translation-
covariant metastate).
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Bigeodesics in first-passage percolation
• First-passage percolation models a random perturbation of Euclidean geometry, 

formed by a random media with short-range correlations (Hammersley-Welsh 
1965). We describe the discrete setting of the lattice ℤ𝐷.

• Edge weights: Independent and identically distributed non-negative 𝜂𝑒 𝑒∈𝐸 ℤ𝐷 .

• Passage time: A random metric 𝑇𝑢,𝑣 on ℤ𝐷 given by

𝑇𝑢,𝑣 ≔ min෍

𝑒∈𝑝

𝜏𝑒

with the minimum over paths 𝑝 connecting 𝑢 and 𝑣.

• Geodesic: The unique path 𝑝 realizing 𝑇𝑢,𝑣, denoted 𝛾𝑢,𝑣.

• Goal: Understand the large-scale properties of the metric 𝑇.
In particular, understand the geometry and length of long geodesics.

• Equivalence: One checks (see Newman (1997)) that in dimension 𝐷 = 2,
non-constant ground configurations exist in the disordered Ising ferromagnet if 
and only if infinite bigeodesics exist in first-passage percolation with the same 𝜂.

• Conjecture: It is believed that bigeodesics do not exist in dimension 𝐷 = 2.
This has been verified under strong unproven assumptions and in related 
integrable models.
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Dobrushin boundary conditions

• Strategy: A natural way to construct non-constant ground configurations is as a 
limit of finite-volume ground configurations with Dobrushin boundary conditions.

• Consider the disordered Ising ferromagnet in Δ𝐿 ≔ −𝐿,… , 𝐿 𝐷. Put boundary 
values 𝜎𝑥 = sgn(𝑥𝐷 − 1/2) for 𝑥 ∉ Δ𝐿, where 𝑥𝐷 is the last coordinate of 𝑥.

• Let 𝜎𝐷𝑜𝑏,𝐿 be the configuration minimizing 𝐻𝜂 with these boundary values.

• Interface: The configuration 𝜎𝐷𝑜𝑏,𝐿 defines a surface (domain wall/cut) separating 
the +1 spins from the −1 spins. The surface may have overhangs.

• Localization: If the surface “height” above the origin remains tight as 𝐿 → ∞, then 
any weak limit of 𝜎𝐷𝑜𝑏,𝐿 is a (measure on) non-constant ground configurations.

5

• The fact that the surface delocalizes in 
dimension 𝐷 = 2 is also called the 
Benjamini-Kalai-Schramm 2003 midpoint 
problem.
This was established by Damron-Hanson 
2015 (under an assumption), Ahlberg-
Hoffman 2016 (unconditionally) and 
Dembin-Elboim-P. 2022 (quantitatively).



Main Results

• Theorem (Bassan-Gilboa-P.): Suppose the disorder distribution 𝜈 is Uniform[𝑎, 𝑏]. 
Then there exists 𝐷0 𝑎, 𝑏 such that for every dimension 𝐷 ≥ 𝐷0 𝑎, 𝑏 , almost 
surely, the finite-volume ground configuration 𝜎𝐷𝑜𝑏,𝐿 converges as 𝐿 → ∞ to a 
non-constant ground configuration 𝜎𝐷𝑜𝑏.

Moreover, 𝐷0 𝑎, 𝑏 = 4 when the ratio 
𝑏−𝑎

𝑎
is sufficiently small.

• Additionally, the limit configuration 𝜎𝐷𝑜𝑏 may be chosen as a measurable 
ℤ𝐷−1-translation-covariant function of the disorder 𝜂.

• Remarks: 1) The technique applies to a wider class of distributions (Lipschitz 
functions of Gaussians with compact support in 0,∞ ).
2) A version of the theorem is also established for anisotropic disorder, in which 
the disorder distribution of the edges in the 𝐷’th direction differs from that of the 
other edges.
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The “no overhangs” approximation (a 
disordered Solid-On-Solid model)

• Bovier-Külske 94,96 studied the problem of interface localization in the “no 
overhangs”, or height function, approximation. Here, 𝑑 ≔ 𝐷 − 1.

• Model (Solid-on-Solid height function in a random environment):
Configurations are 𝜑: ℤ𝑑 → ℤ. Hamiltonian is

𝐻𝑆𝑂𝑆,𝑉 𝜑 ≔ −𝑎෍

𝑢∼𝑣

𝜑𝑢 − 𝜑𝑣 −෍

𝑣

𝑉𝑣 𝜑𝑣

where the potentials 𝑉𝑣 𝑘
𝑣,𝑘

are independent, distributed as Uniform[𝑎, 𝑏] (or 

more general distributions).

• Approximation: Obtained from the disordered Ising ferromagnet under Dobrushin
boundary conditions under the assumptions that the interface has no overhangs 
and the coupling constants of all edges except in the 𝐷’th direction are exactly 𝑎.

• Theorem (Bovier-Külske 1994): For 𝑑 ≥ 3, if 
𝑏−𝑎

𝑎
is sufficiently small then, almost 

surely, the finite-volume ground configurations (or low-temperature measures) 
with zero boundary values converge to an infinite-volume (localized) measure.

• Theorem (Bovier-Külske 1996): For d=1,2, there are no translation-covariant and 
“coupling-covariant” low-temperature Gibbs states.
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Proof approach

• Bovier-Külske 1994 (86 pages!) adapt the rigorous renormalization approach of 
Bricmont-Kupiainen 1988 who proved long-range order for the random-field Ising
model (RFIM) in dimensions 𝑑 ≥ 3 (at weak disorder and low temperature, 
following Imbrie 1984 at zero temperature).

• Recently, Ding-Zhuang 2021 found a short proof for long-range order in the RFIM 
in dimensions 𝑑 ≥ 3.
The proof finds a clever way to adapt the Peierls argument to the RFIM setting, 
using a concentration argument for the ground energy (following a concentration 
argument of Fisher-Fröhlich-Spencer 1984 for the “no contour within contour” 
approximation of the RFIM. Also related is Chalker 1983).

• We observe that the argument of Ding-Zhuang 2021 adapts to yield a short proof 
for the Solid-On-Solid setup.
Our main result is then obtained by a complicated synthesis of Dobrushin’s (1972) 
proof of the existence of localized interfaces in the 𝑑 ≥ 3 pure Ising model with 
the approach of Ding-Zhuang 2021.
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Solid-On-Solid proof I
(energy improvement)

• Model and notation: Configurations are 𝜑: ℤ𝑑 → ℤ. Hamiltonian is

𝐻𝑆𝑂𝑆,𝑉 𝜑 ≔ −𝑎෍

𝑢∼𝑣

𝜑𝑢 − 𝜑𝑣 −෍

𝑣

𝑉𝑣 𝜑𝑣

where the potentials 𝑉𝑣 𝑘
𝑣,𝑘

are independent, distributed as Uniform[𝑎, 𝑏].

• Let 𝜑𝑉,𝐿 be the minimizer of 𝐻𝑆𝑂𝑆,𝑉 𝜑 in 𝜑:𝜑ȁΛ𝐿
𝑐 ≡ 0 with Λ𝐿 ≔ −𝐿,… , 𝐿 𝑑.

Write 𝐺𝐸𝑉,𝐿 ≔𝐻𝑆𝑂𝑆,𝑉 𝜑𝑉,𝐿 so that the differences 𝐺𝐸𝑉
′,𝐿 − 𝐺𝐸𝑉,𝐿 are defined.

• Graph notation: Write 𝒞 ≔ 𝐴 ⊂ ℤ𝑑 finite ∶ 𝐴 and 𝐴𝑐 connected, 0 ∈ 𝐴 .

Let 𝜕𝐴 be the edge boundary of 𝐴 ⊂ ℤ𝑑.

• Claim: ∃𝛼𝑑 > 0 such that the following holds.

If 𝜑0
𝑉,𝐿 = 𝑘 > 0 then there exists 𝐴 ∈ 𝒞 and 0 < 𝑟 ≤ 𝑘 such that 𝑟 𝜕𝐴 ≥ 𝑘𝛼𝑑 and

𝜑𝑢
𝑉,𝐿 ≥ 𝜑𝑣

𝑉,𝐿 + 𝑟 when 𝑢, 𝑣 ∈ 𝜕𝐴, 𝑢 ∈ 𝐴.

• In this setting, 𝐻𝑆𝑂𝑆,𝑉 𝜑𝑉,𝐿 − 𝐻𝑆𝑂𝑆,𝑉𝐴 𝜑𝑉,𝐿 − 𝑟1𝐴 ≥ 𝑎𝑟 𝜕𝐴 ≥ 𝑎𝑘𝛼𝑑,

where we set 𝑉𝑣
𝐴,𝑟 𝑚 ≔ ቊ

𝑉𝑣(𝑚 + 𝑟) 𝑣 ∈ 𝐴
𝑉𝑣(𝑚) 𝑣 ∉ 𝐴

.

• Ground energy improvement: In particular, 𝐺𝐸𝑉,𝐿 − 𝐺𝐸𝑉
𝐴,r,𝐿 ≥ 𝑎𝑟 𝜕𝐴 ≥ 𝑎𝑘𝛼𝑑.
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Solid-On-Solid proof II
(energy concentration)

• Ground energy improvement: Recall 𝑉𝑣
𝐴,𝑟 𝑚 ≔ ቊ

𝑉𝑣 𝑚+ 𝑟 𝑣 ∈ 𝐴

𝑉𝑣 𝑚 𝑣 ∉ 𝐴
.

If 𝜑0
𝑉,𝐿 = 𝑘 > 0 then there exist 𝐴 ∈ 𝒞 and 0 < 𝑟 ≤ 𝑘 such that

𝐺𝐸𝑉,𝐿 − 𝐺𝐸𝑉
𝐴,r,𝐿 ≥ 𝑎𝑟 𝜕𝐴 ≥ 𝑎𝑘𝛼𝑑

• Theorem (adapting Ding-Zhuang 2021, following Fisher-Fröhlich-Spencer 1984):

Let 𝑑 ≥ 3. Let
𝑏−𝑎

𝑎
be sufficiently small. For each 𝑀, 𝑟, 𝑡 > 0, if 𝑡2 ≥ 𝐶𝑑𝑀

𝑑

𝑑−1 then

ℙ ∃𝐴 ∈ 𝒞, 𝜕𝐴 = 𝑀, 𝐺𝐸𝑉,𝐿 − 𝐺𝐸𝑉
𝐴,𝑟,𝐿 ≥ 𝑡 ≤ 𝐶𝑑𝑒

−𝑐𝑑𝑡
2𝑀

−
𝑑

𝑑−1 .

• Basic concentration (two-point estimate): For each 𝐴, 𝐵 ⊂ Λ𝐿, 𝑟 ∈ ℤ,

ℙ 𝐺𝐸𝑉
𝐴,𝑟,𝐿 − 𝐺𝐸𝑉

𝐵,𝑟,𝐿 ≥ 𝑡 ≤ 𝐶𝑒
−𝑐

𝑡2

𝐴Δ𝐵 .

• This is a consequence of the inequality

ℙ 𝐺𝐸𝑉
𝐴,𝑟,𝐿 − 𝔼 𝐺𝐸𝑉

𝐴,𝑟,𝐿 𝑉ȁ 𝐴ΔB 𝑐 ≥ 𝑡 𝑉ȁ 𝐴ΔB 𝑐 ≤ 𝐶𝑒
−𝑐

𝑡2

𝐴Δ𝐵 (1)

and the fact that 𝔼 𝐺𝐸𝑉
𝐴,𝑟,𝐿 𝑉ȁ 𝐴ΔB 𝑐 = 𝔼 𝐺𝐸𝑉

𝐵,𝑟,𝐿 𝑉ȁ 𝐴ΔB 𝑐 . Inequality (1) 

follows from Hoeffding’s inequality (resampling a column of disorder at once) or 
from concentration of Lipschitz functions of Gaussian random variables.
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Solid-On-Solid proof III
(coarse graining)

• Theorem (adapting Ding-Zhuang 2021, following Fisher-Fröhlich-Spencer 1984):

Let 𝑑 ≥ 3. Let
𝑏−𝑎

𝑎
be sufficiently small. For each 𝑀, 𝑟, 𝑡 > 0, if 𝑡2 ≥ 𝐶𝑑𝑀

𝑑

𝑑−1 then

ℙ ∃𝐴 ∈ 𝒞, 𝜕𝐴 = 𝑀, 𝐺𝐸𝑉,𝐿 − 𝐺𝐸𝑉
𝐴,𝑟,𝐿 ≥ 𝑡 ≤ 𝐶𝑑𝑒

−𝑐𝑑𝑡
2𝑀

−
𝑑

𝑑−1 (2)

• Basic concentration (two-point estimate): For each 𝐴, 𝐵 ⊂ Λ𝐿, 𝑟 ∈ ℤ,

ℙ 𝐺𝐸𝑉
𝐴,𝑟,𝐿 − 𝐺𝐸𝑉

𝐵,𝑟,𝐿 ≥ 𝑡 ≤ 𝐶𝑒
−𝑐

𝑡2

𝐴Δ𝐵 (3)

• The inequality (3) yields the bound on the right-hand side of (2) for a fixed A, using 

that 𝐴 ≤ 𝐶𝑑𝑀
𝑑

𝑑−1. However, this does not suffice to conclude by a union bound 
over all 𝐴, since there are ≈ 𝑒𝐶𝑑𝑀 such 𝐴 and we need the case 𝑡 ≈ 𝑀.

• The proof uses a chaining argument using (3), following a chaining scheme 
introduced by Fisher-Fröhlich-Spencer 1984. The idea is to coarse grain the 
possible sets 𝐴, defining the 𝑚th approximation 𝐴𝑚 of 𝐴 as follows:

• Partition ℤ𝑑 into cubes of side length 2𝑚. Put a cube 𝐶 in 𝐴𝑚 if 𝐶 ∩ 𝐴 ≥
1

2
ȁ𝐶ȁ.

• In this way we obtain a sequence of sets 𝐴 = 𝐴0, 𝐴1, … , 𝐴𝑚0, with 𝑚0 chosen so 
that a union bound is applicable to the set of all possible 𝐴𝑚0 and to the 
“transitions” from each 𝐴𝑚 to 𝐴𝑚−1. 11



Disordered Ising ferromagnet adaptations
• There are many difficulties in adapting the proof from the Solid-On-Solid model to 

the Dobrushin interface of the disordered Ising ferromagnet.

1. Instead of shifting 𝜑 and 𝑉 on a single set 𝐴, we have to consider a more general 
shift function 𝑠: ℤ𝑑 → ℤ which tells how much to shift each column of the Ising
configuration 𝜎 and the disorder 𝜂.
This necessitates a development of the corresponding enumeration and coarse 
(and fine) graining techniques for such shift functions.

2. To obtain a shift function leading to energy improvement we need to rely on 
Dobrushin’s (1972) decomposition of the interface into walls. However, in regions 
with overhangs this technology doesn’t directly yield a shift. To overcome this, we 
found and proved the following combinatorial fact:

Lemma: In the disordered ferromagnet with disorder 𝜂: 𝐸 ℤ𝑑 → [0,∞), if 𝜂 is 

constant on the edges 𝑥, 𝑥 + 𝑒𝑖 with 𝑖 ≠ 𝐷, then (one of) the zero-temperature 
interface under Dobrushin boundary conditions has no overhangs.
This also allows to see the Solid-On-Solid setup as a special case of the disordered 
ferromagnet.

3. A serious complication arises from the fact that having overhangs in the interface 
leads to a weaker concentration bound (larger Lipschitz constant). To overcome 
this, we employ an involved induction scheme over the energetic improvement. 12



Open questions
• “Wide spread” disorder: For Uniform[𝑎, 𝑏] disorder distribution, our results prove 

localization of the Dobrushin interface when 𝐷 ≥ 4 and 
𝑏−𝑎

𝑎
is small. 

What happens for other choices of 
𝑏−𝑎

𝑎
?

Based on considerations of minimal surfaces in random environment with 
continuous values, we conjecture that there is always localization for 𝐷 ≥ 6.
It may be the case that for 𝐷 = 4,5 (or just 𝐷 = 4) there is a roughening transition 

as 
𝑏−𝑎

𝑎
grows, from a localized to a delocalized regime. Related conjecture for the 

simpler “Integer-valued random-field Gaussian free field” is in Dario-Harel-P. 2023.

• Dimension D=3: As in the Bovier-Külske 1996 result, we expect that the Dobrushin
boundary conditions interface is always delocalized. We even expect its height to 
be a power of 𝐿. However, non-constant ground configurations may still exist.

• Uniqueness: We prove the existence of a ℤ𝐷−1-translation-covariant
non-constant ground configuration in the disordered Ising
ferromagnet. We believe that such a ground configuration
is unique up to translations in the 𝐷’th coordinate direction.

• Tilted surfaces: What happens under “tilted” Dobrushin
boundary conditions? Still expect localization for given tilt in 𝐷 ≥ 6. 13


	Slide 1: Non-constant ground configurations in the disordered Ising ferromagnet 
	Slide 2: The disordered Ising ferromagnet
	Slide 3: Ground configurations
	Slide 4: Bigeodesics in first-passage percolation
	Slide 5: Dobrushin boundary conditions
	Slide 6: Main Results
	Slide 7: The “no overhangs” approximation (a disordered Solid-On-Solid model)
	Slide 8: Proof approach
	Slide 9: Solid-On-Solid proof I (energy improvement)
	Slide 10: Solid-On-Solid proof II (energy concentration)
	Slide 11: Solid-On-Solid proof III (coarse graining)
	Slide 12: Disordered Ising ferromagnet adaptations
	Slide 13: Open questions

